Energy relaxation and thermalization of hot electrons in quantum wires.
نویسندگان
چکیده
We develop a theory of energy relaxation and thermalization of hot carriers in clean quantum wires. Our theory is based on a controlled perturbative approach for large excitation energies and emphasizes the important roles of the electron spin and finite temperature. Unlike in higher dimensions, relaxation in one-dimensional electron liquids requires three-body collisions and is much faster for particles than holes which relax at nonzero temperatures only. Moreover, comoving carriers thermalize more rapidly than counterpropagating carriers. Our results are quantitatively consistent with a recent experiment.
منابع مشابه
Ultrafast Spectroscopy of CdSe Nanocrystals: Morphological and Environmental Effects on Nonradiative and Nonadiabatic Relaxation
Ultrafast transient absorption spectroscopy was employed to investigate intraband relaxation and coherent acoustic phonons in quantum dots (QDs) and quantum rods (QRs) of various sizes. We found that the hot electrons and hot holes relaxed through a nonradiative Auger thermalization mechanism that circumvents the phonon bottleneck effect, resulting in sub-2.5 ps intraband relaxation times. The ...
متن کاملPlasmon-pole approximation for semiconductor quantum-wire electrons.
We develop the plasmon-pole approximation for an interacting electron gas confined in a semiconductor quantum wire. We argue that the plasmon-pole approximation becomes a more accurate approach in quantum wire systems than in higher dimensional systems because of severe phase-space restrictions on particle-hole excitations in one dimension. As examples, we use the plasmon-pole approximation to ...
متن کاملSubpicosecond Observation of Photoexcited Carrier Thermalization and Relaxation in InP-Based Films1
Advancements in microfabrication techniques and thin film growth have led to complex integrated photonic devices. The performance of these devices relies upon precise control of the band gap and absorption mechanisms in the thin film structures, as well as a fundamental understanding of the photoexcited carrier thermalization and relaxation processes. Using a pumpprobe technique, it is possible...
متن کاملHot adsorbate-induced retardation of the internal thermalization of nonequilibrium electrons in adsorbate-covered metal nanoparticles.
Femtosecond transient absorption spectroscopy has been used to investigate the electron-electron scattering dynamics in sulfate-covered gold nanoparticles of 2.5 and 9.2 nm in diameter. We observe an unexpected retardation of the absolute internal thermalization time compared to bulk gold, which is attributed to a negative feedback by the vibrationally excited sulfate molecules. These hot adsor...
متن کاملEnergy Balance and Gas Thermalization in a High Power Microwave Discharge in Mixtures
The dynamics of fast gas heating in a high power microwave discharge in air, is investigated in the framework of FDTD simulations of the Maxwell equations coupled with the fluid simulations of the plasma. It is shown that, an ultra-fast gas heating of the order of several 100 Kelvins occurs in less than 100 ns. The main role in the heating is played by the electron impact dissociation of , diss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 105 22 شماره
صفحات -
تاریخ انتشار 2010